黄仁勋:我从不在乎市场份额、英伟达唯一目标是创造新市场

业界 来源:量子位 2024-10-23 14:22:17

“这是我听过的黄仁勋最好的采访!”

英伟达CEO黄仁勋的一场炉边谈话再次引起热议:

英伟达从来没有一天谈论过市场份额。

我们所讨论的只是:如何创造下一个东西?如何将过去需要一年才能完成的飞轮缩短到一个月?

面对Azure和AWS等正在自主构建ASIC芯片的云计算大客户,老黄打了个比喻:

公司受到鱼塘大小的限制,唯一的目标是用想象力扩大鱼塘。(指创造新市场)

当然了,除了提及英伟达,老黄还讨论了AGI的智能扩展、机器学习的加速、推理与训练的重要性……

虽然时长感人(近1个半小时),但一大波网友已经看完并交起了作业(开始卷了是吧!)

网友:学起来!学起来!

黄仁勋:未来推理的增长将远大于训练

鉴于视频较长,量子位先直接给大家划重点了,老黄的主要观点包括(省流版):

“口袋里的AI助理”将很快以某种形式出现,尽管最初可能会不完美;

英伟达的竞争优势在于建立了从GPU、CPU、网络到软件和库的全栈平台

扩展人工智能的重点已从训练前转移到训练后和推理;

推理(inference)时计算将作为一个全新的智能扩展向量;

未来推理的增长将远大于训练的增长;

闭源和开源将共存,开源模型可能用于创建特定领域的应用程序;

……

(以下为重点部分整理)

Q:关于个人AI助理的发展前景,您认为我们何时能在口袋里装上一个无所不知的AI助理?

A:很快就会以某种形式出现。这个助理一开始可能不够完美,但会随着时间推移不断改进,这是技术发展的必然规律。

Q:目前AI领域的发展变化速度是否是您见过最快的?

A:是的,这是因为我们重新发明了计算。在过去10年里,我们将计算的边际成本降低了10万倍,而按照摩尔定律可能只能降低100倍。

我们通过以下方式实现了这一点:

引入加速计算,将原本在CPU上效率不高的工作转移到GPU上

发明新的数值精度

开发新架构(如张量核心)

采用高速内存(HBM)

通过MVLink和InfiniBand实现系统扩展

这种快速发展使我们从人工编程转向了机器学习,整个技术栈都在快速创新和进步。

Q:模型规模扩展方面有哪些变化?

A:以前我们主要关注预训练模型的扩展(重点在模型大小和数据规模),这使得所需计算能力每年增加4倍。

现在我们看到后训练(post-training)和推理阶段也在扩展。人类的思维过程不可能是一次性完成的,而是需要快思维、慢思维、推理、反思、迭代和模拟等多个环节。

而且,以前人们认为预训练难,推理简单,但现在都很难了。

Q:与3-4年前相比,您认为NVIDIA今天的优势是更大还是更小?

A:实际上更大了。过去人们认为芯片设计就是追求更多的FLOPS和性能指标,这种想法已经过时。

现在的关键在于整个机器学习系统的数据流水线(flywheel),因为机器学习不仅仅是软件编程,而是涉及整个数据处理流程。从一开始的数据管理就需要AI参与。数据的收集、整理、训练前的准备等每个环节都很复杂,需要大量处理工作。

Q:与Intel等公司相比,Nvidia在芯片制造和设计方面有什么不同的策略?

A:Intel的优势在于制造和设计更快的x86串行处理芯片,而Nvidia采取不同策略:

在并行处理中,不需要每个晶体管都很出色

我们更倾向于使用更多但较慢的晶体管,而不是更少但更快的晶体管

宁愿有10倍数量、速度慢20%的晶体管,也不要数量少10倍、速度快20%的晶体管

Q:关于定制ASIC(如Meta的推理加速器、亚马逊的Trainium、Google的TPU)以及供应短缺的情况,这些是否会改变与NVIDIA的合作动态?

A:这些都是在做不同的事情。NVIDIA致力于为这个新的机器学习、生成式AI和智能Agent世界构建计算平台。

在过去60年里,我们重新发明了整个计算技术栈,从编程方式到处理器架构,从软件应用到人工智能,每个层面都发生了变革。我们的目标是创建一个随处可用的计算平台。

Q:NVIDIA作为一家公司的核心目的是什么?

A:构建一个无处不在的架构平台。我们不是在争夺市场份额,而是在创造市场。我们专注于创新和解决下一个问题,让技术进步的速度更快。

Q:NVIDIA对待竞争对手和合作伙伴的态度是什么?

A:我们对竞争很清醒,但这不会改变我们的使命。我们向AWS、Azure等合作伙伴提前分享路线图,保持透明,即使他们在开发自己的芯片。对于开发者和AI初创公司,我们提供CUDA作为统一入口。

Q:对OpenAI的看法如何?如何看待它的崛起?

A: OpenAI是我们这个时代最重要的公司之一。虽然AGI的具体定义和时间点并不是最重要的,但AI能力的发展路线图将会非常壮观。从生物学家到气候研究者,从游戏设计师到制造工程师,AI已经在革新各个领域的工作方式。

我非常欣赏OpenAI推进这一领域的速度和决心,并为可以资助下一代模型感到高兴。

Q:您认为模型层是否正在走向商品化,以及这对模型公司的影响是什么?

A:模型层正在商品化,Llama的出现使得构建模型变得更加便宜。这将导致模型公司的整合,只有那些拥有经济引擎并能够持续投资的公司才能生存。

Q:您如何看待AI模型的未来,以及模型与人工智能之间的区别?

A:模型是人工智能必不可少的组成部分,但人工智能是一种能力,需要应用于不同的领域。我们将看到模型层的发展,但更重要的是人工智能如何应用于各种不同的应用场景。

Q:您如何看待X公司,以及他们建立大型超级集群的成就?

A:他们在19天内(通常需要3年)建造了一个拥有100,000个GPU的超级计算机集群。这展示了我们的平台的力量,以及我们能够将整个生态系统集成在一起的能力。

Q:是否认为分布式计算和推理扩展将会发展到更大规模?

A:是的,我对此非常热情和乐观。推理时计算作为一个全新的智能扩展向量,与仅仅构建更大的模型截然不同。

Q:在人工智能中,是否很多事情只能在运行时完成?

A:是的,很多智能工作不能先验地完成,很多事情需要在运行时完成

Q:您如何看待人工智能的安全性?

A:我们必须构建安全的人工智能,并为此需要与政府机构合作。我们已经在建立许多系统来确保人工智能的安全性,并需要确保人工智能对人类是有益的。

Q:你们公司超过40%的收入来自推理,推理的重要性是否因为推理链而大大增加?

A:没错,推理链让推理的能力提高了十亿倍,这是我们正在经历的工业革命。未来推理的增长将远大于训练的增长。

Q:你们如何看待开源和闭源人工智能模型的未来?

A:开源和闭源模型都将存在,它们对于不同的行业和应用都是必要的。开源模型有助于激活多个行业,而闭源模型则是经济模型创新的引擎。

对于上述这些,你怎么看?欢迎在评论区留言讨论。

参考链接:

[1]https://x.com/StartupArchive_/status/1848693280948818070

[2]https://www.youtube.com/watch?v=bUrCR4jQQg8

责任编辑:落木

文章内容举报

延伸阅读
  • 黄仁勋:英伟达中国有近4000名员工 离职率全球最低!

    在今日的英伟达答谢迎春会中,创始人黄仁勋发表欢迎致辞。他在致辞中提到,英伟达已经来中国25年了,在中国的北京、上海、深圳三个城市,拥有4000名员工。而中国员工的离职率仅有0.9%,是全球最低的。以下

  • 黄仁勋现身北京:NVIDIA中国员工离职率全球最低

    最近,黄仁勋相当忙碌,在中国多地奔波。他首先在深圳参加了NVIDIA公司年会,然后赶赴中国台湾,参加了纬创的年会、日月光旗下矽品精密潭科新厂的揭牌仪式,还宴请了台积电董事长魏哲家、鸿海董事长刘扬伟、英

  • 黄仁勋深圳年会盛赞《黑神话》:世界第一游戏!

    日前,英伟达CEO黄仁勋现身深圳,出席当地分公司年会。有网友分享了年会现场的视频,没有穿着“皮衣本体”的黄仁勋伴随着大话西游BGM激情登场,发表讲话提及国产游戏《黑神话:悟空》。黄仁勋向公司员工说到:

关注公众号:拾黑(shiheibook)了解更多

友情链接:

关注数据与安全,洞悉企业级服务市场:https://www.ijiandao.com/
安全、绿色软件下载就上极速下载站:https://www.yaorank.com/

公众号 关注网络尖刀微信公众号
随时掌握互联网精彩
赞助链接