DeepSeek推出FlashMLA项目 可以显著降低内存占用和计算开销
开源人工智能技术开发商 DeepSeek 上周已经预告将在本周陆续推出 5 个已经在生产环境中使用的技术,目前首个项目 FlashMLA 已经在 GitHub 上公布。
FlashMLA 是一种针对 NVIDIA Grace Hopper 架构 GPU 设计的高效多层注意力 (Multi-Layer Attention,MLA) 解码内核,该技术不仅可以优化变长序列的处理性能,还可以将低内存占用和计算开销。
该技术的关键特点包括:
BF16 支持:FlashMLA 采用 BF16 精度格式,兼顾 FP32 的动态范围和 FP16 的计算效率,这种设计可以显著降低内存占用和计算开销,特别适合深度学习模型的推理阶段。
分页 KV 缓存技术:Paged KV Cache 通过块大小为 64 的分页键缓存系统,FlashMLA 优化了 Transformer 模型中键值对的存储和访问,减少内存碎片和延迟等,这项技术主要是和处理变长序列,确保在不同输入长度下都能保持高效性能。
卓越性能:在 NVIDIA H800 GPU 上,FlashMLA 实现了 3000GB / 秒的内存带宽利用率 (内存限制场景) 和 580TFLOPS 的计算能力 (计算限制场景),数据表明 FlashMLA 可以充分利用 Hopper 架构的 HBM 高带宽内存和并行计算能力。
FlashMLA 优化变长序列带来的优势:
变长序列是自然语言处理、语音识别、时间序列分析等领域面临的常见技术挑战,传统模型在处理不固定长度的输入时往往效率会比较低,FlashMLA 通过针对性优化可以提高大型模型在变长序列场景下的推理速度,因此适合用于需要实时响应和高吞吐量的应用。
也就是说借助这项优势未来其他模型也可以优化响应速度,尤其是实时语音模式这种对响应速度有要求的场景,AI 可以更快的回答而不是让用户长时间等待。
目前 FlashMLA 已经在 GitHub 上完全开源,开发者只需要使用简单的 Python 命令即可快速部署,DeepSeek 也提供了测试脚本用来验证性能:https://github.com/deepseek-ai/FlashMLA
该项目的开源特性还借鉴了 FlashAttention 2&3 以及 CUTLASS 项目的模块化设计,有兴趣的开发者也可以研究上游项目的具体细节。
-
AI独角兽崩塌 全是印度程序员冒充
编辑|定慧 好困印度老哥是真的有点猛啊!今天要说的这位,是AI编程公司Builder.ai的创始人兼前CEO——Sachin Dev Duggal。他不仅造了个「全是人工,没有智能」的假AI公司从软银
-
微软在Windows 11右键菜单中新增询问Copilot按钮可以调用AI查内容
微软日前通过发布新版 Copilot AI 应用在 Windows 11 右键菜单 (上下文菜单) 中增加新选项:询问 Copilot。这个新选项让本来就已经比较臃肿的右键菜单更加臃肿,或许还会增加右
-
淘宝答题免单引发AI“混战”
淘宝免单又又又来了! 5月6日凌晨,淘宝周年庆答题免单再次开启,作为淘宝510周年庆的主打活动之一,去年首次推出后,吸引上亿人次关注和参与。 据悉,今年免单活动玩法升级,猜中答案后即可从近12
关注公众号:拾黑(shiheibook)了解更多
友情链接:
关注数据与安全,洞悉企业级服务市场:https://www.ijiandao.com/
安全、绿色软件下载就上极速下载站:https://www.yaorank.com/